Derivation of the generalized rank annihilation method (GRAM)

نویسنده

  • Klaas Faber
چکیده

Introduction The generalized rank annihilation method (GRAM) is a method for curve resolution and calibration that requires only a single calibration sample to obtain the socalled second-order advantage, i.e., it can determine the analyte of interest in the presence of unsuspected interferences [1]. GRAM is only one of many competing methods that can be applied to this particular data set-up. However, GRAM stands out for two reasons. First, its error analysis is extensively studied, see e.g. [2,3]. Second, GRAM has been reported to compare favorably with alternating least squares (ALS), alternating trilinear decomposition (ATLD), alternating coupled vectors resolution (ACOVER), alternating slice-wise diagonalization (ASD), alternating coupled matrices resolution (ACOMAR), self-weighted alternating trilinear decomposition (SWATLD) and pseudo alternating least squares (PALS), see [4]. Currently, no useful generalization of GRAM to multiple calibration samples seems to exist [5], however. Several derivations of GRAM are published in the chemometrics literature, but they tend to be complicated. The remainder of this note consists of (1) a derivation that requires fewer steps and (2) a discussion that intends to shed some light on the properties of the solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous spectrofluorometric determination of piroxicam and pyridoxine using generalized rank annihilation method.

The application of generalized rank annihilation method (GRAM) to the analysis of fluorescence excitation-emission matrices of mixtures of piroxicam and pyridoxine is described. The input of GRAM consists of two bilinear data matrices, i.e. one for unknown and one for the calibration sample. The excitation wavelength range was from 290 to 340 nm and the emission was recorded from 370 to 560 nm....

متن کامل

On Jordan left derivations and generalized Jordan left derivations of matrix rings

Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...

متن کامل

Generalized sigma-derivation on Banach algebras

Let $mathcal{A}$ be a Banach algebra and $mathcal{M}$ be a Banach $mathcal{A}$-bimodule. We say that a linear mapping $delta:mathcal{A} rightarrow mathcal{M}$ is a generalized $sigma$-derivation whenever there exists a $sigma$-derivation $d:mathcal{A} rightarrow mathcal{M}$ such that $delta(ab) = delta(a)sigma(b) + sigma(a)d(b)$, for all $a,b in mathcal{A}$. Giving some facts concerning general...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005